Resilient Distribution Networks by Microgrid Formation Using Deep Reinforcement Learning
نویسندگان
چکیده
Resilience becomes vital for power grids facing the increasingly frequent extreme weather events. Microgrid formation is a promising way to achieve resilient distribution networks (RDN) when utility unavailable. This paper proposes RDN-oriented microgrid (RoMF) method based on deep reinforcement learning (DRL) technique, which integrates OpenDSS as an interaction object and searches optimal control policies in model-free fashion. Specifically, we formulate problem Markov decision process, taking into account complex factors such unbalanced three-phase flow operation constraints. Next, simulator-based RoMF environment constructed integrated OpenAI Gym, providing standard agent-environment interface applying DRL algorithms. Then, Q-network used search strategies, offline-training online-application framework of DRL-based given. Finally, extensive numerical results validate effectiveness our proposed method.
منابع مشابه
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
BinDNN: Resilient Function Matching Using Deep Learning
Determining if two functions taken from different compiled binaries originate from the same function in the source code has many applications to malware reverse engineering. Namely, this process allows an analyst to filter large swaths of code, removing functions that have been previously observed or those that originate in shared or trusted libraries. However, this task is challenging due to t...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Smart Grid
سال: 2022
ISSN: ['1949-3053', '1949-3061']
DOI: https://doi.org/10.1109/tsg.2022.3179593